2つの線の交点を表す数式を作ってpython matplotlibで検証

XY座標に点A1(Xa1, Ya1), A2(Xa2, Ya2), B1(Xb1, Yb1), B2(Xb2, Yb2)があったとして、

線A1A2 と 線B1B2の交点を数学的に求め、数式があってるか確かめようという話。

以下のように数学的に求めます。

  • まず交点の式をだします。

f:id:keimina:20171014081940j:plain

  • 次に上画像の一番下に書いてある方程式を解きます。

f:id:keimina:20171014081906j:plain

  • 逆行列をどうやって求めるかは、numpyライブラリを使わずに数学公式を使います。

行列Mとその逆行列invMの関係は以下になります。

M = ((a,b),(c,d))
invM = 1/(a*d - b*c) * ((d, -b),(-c, a))

参考:
2x2行列と3x3行列と4x4行列の逆行列の公式

  • 準備が整ったのでpythonで実装します。

交点を求める自作関数get_line_intersectionで上記で求めた数式を使っています。

from numpy import sin, cos, pi
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider


class point:
    def __init__(self, x, y):
        self.x = float(x)
        self.y = float(y)

def get_line_intersection(A1, A2, B1, B2):
    a = A2.y - A1.y
    b = -B2.y + B1.y
    c = A2.x - A1.x
    d = -B2.x + B1.x
    C1 = B1.y - A1.y
    C2 = B1.x - A1.x
    
    tmp = a * d - b * c
    if tmp:
        invMa = d  / tmp
        invMb = -b / tmp
        invMc = -c / tmp
        invMd = a  / tmp
        
        m = invMa * C1 + invMb * C2
        n = invMc * C1 + invMd * C2

        if 0<=m<=1 and 0<=n<=1:#両方の線上に点がある場合は交点の座標を返す
            return point(A1.x + m * (A2.x - A1.x), A1.y + m * (A2.y - A1.y))
        else:
            return point(0, 0)#辺の延長線上に交点がある場合は(0,0)を返すこととする
    else:
        return point(0, 0)#逆行列が存在しない時は強制的に(0,0)を返すことにする

################################################################
# 描画
################################################################
fig, ax = plt.subplots()
ax.set_xlim(-11,29)
ax.set_ylim(-11,29)
ax.set_aspect('equal')

plt.subplots_adjust(left=0.25, bottom=0.35)
l1, = plt.plot([6, 6], [6 + 5 * cos(pi/2), 6 + 5 * sin(pi/2)])
l2, = plt.plot([12, 12], [12 + 5 * cos(pi/2), 12 + 5 * sin(pi/2)])
l3, = plt.plot([0],[0], marker="o")


axcolor = 'lightgoldenrodyellow'
axRA = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor)
axTA = plt.axes([0.25, 0.15, 0.65, 0.03], facecolor=axcolor)

axRB = plt.axes([0.25, 0.2, 0.65, 0.03], facecolor=axcolor)
axTB = plt.axes([0.25, 0.25, 0.65, 0.03], facecolor=axcolor)


RA = Slider(axRA, 'RadiusA', 0.0, 20.0, valinit=5.0)
TA = Slider(axTA, 'ThetaA', 0.0, 4 * pi, valinit=pi/2)

RB = Slider(axRB, 'RadiusB', 0.0, 20.0, valinit=5.0)
TB = Slider(axTB, 'ThetaB', 0.0, 4 * pi, valinit=pi/2)

def update(val):
    l1.set_xdata([6, 6 + RA.val * cos(TA.val)])
    l1.set_ydata([6, 6 + RA.val * sin(TA.val)])
    l2.set_xdata([12, 12 + RB.val * cos(TB.val)])
    l2.set_ydata([12, 12 + RB.val * sin(TB.val)])
    p = get_line_intersection(point(6,6), point(6+RA.val*cos(TA.val), 6+RA.val*sin(TA.val)), point(12,12), point(12+RB.val*cos(TB.val), 12+RB.val*sin(TB.val)))
    l3.set_xdata([p.x])
    l3.set_ydata([p.y])
    fig.canvas.draw_idle()

RA.on_changed(update)
TA.on_changed(update)
RB.on_changed(update)
TB.on_changed(update)

plt.show()
  • 実行結果

youtu.be

  • 計算時間

CPU Core i7 2.0Ghzで計算したが計算時間は100万回やっても5秒くらいらしい

100000 loops, best of 3: 4.76 µs per loop

無人島で直角三角形の角度をかなりアバウト(誤差20%以内)に計りたい時に使えるかもしれない簡単な計算式

おそらく、無人島の先生がこの直角三角形のアバウトな角度出しなさいという問題に答える生徒しか使わない気がしますが一応書いておきます。

無人島で直角三角形ABCの角度をアバウトに図りたい時は

角度 = 60 * 高さ / 底辺

を計算します。計算した角度から大まかな誤差を求めます。

誤差は
40°で約20%
20°で約10%
10°で約5%
となります。

この誤差をみて使えるか使えないか判断するとよいでしょう。
誤差が大きい場合は別の手法を使いましょう。

この数式の背景にあるもの:

x が 0 に限りなく近い時以下が成り立ちます。
x = tan(x)

私の疑問として、

  • x が 0 に近くないときも使ってみたとしたら誤差がどれくらいになるのか、
  • 計算を簡単にするため円周率を3.14ではなく3にしてみたらどれくらいになるのか

というのがあり、それを計算機で計算し誤差を求めた結果、上記数式が使えない使えることを発見しました。

検証は以下のコードでで行いました。

import numpy as np
import matplotlib.pyplot as plt

def rad_to_degree(rad):
    return rad * 60

end_degree = 45
xdegree = np.linspace(0.000000000000001,end_degree,100)
xrad = np.pi * 2 * xdegree / 360
guess_degree = rad_to_degree(np.tan(xrad))
true_degree = xdegree
diff = guess_degree - true_degree

fig = plt.figure()

ax = fig.add_subplot(111)
ax.set_xlabel("x [Degree]", fontsize=14, fontweight='bold')
ax.set_ylabel("gosa [%]", fontsize=14, fontweight='bold')
ax.plot(xdegree, abs(diff)/true_degree*100)

plt.show()

f:id:keimina:20171007162529p:plain

以上です。

反省、ダメなIPhoneアプリを作って、iPhoneアプリ開発やめた話

私がiPhoneアプリを作成したのは、全くの趣味というか好奇心で始めたことを最初に伝えておきます。また、私はアプリ開発で飯を食べている人でありませんので勘違いしないでください。2年くらい前にiPhoneアプリを作って無料広告アプリとしてリリースしたことがありましたが、全くの赤字だったので、やめました。当時の私は、デベロッパー登録をすませるとなぜか、ひたすら新しいアプリをリリースしなければならない気持ちになってしまい、アプリの完成度が低いままリリースしていました。デベロッパー登録、それは正常な判断を鈍らせ人をダメにし、アプリをリリースし続けなければならないと思わせる魔力があります(私にとっては)。もちろん初心者デベロッパーですので、アプリができたらすぐにアップロード、アップロード、アップロードしまくりました、労力とアプリのダウンロード数は比例するのかわかりませんが、とにかくアプリはダウンロードされませんでした、1日に3ダウンロードだったと思います。2年でデベロッパ登録料金2万円払いましたが完全に赤字です。ただし、広告収入が5000円ほど入っていました。やったね。すなわち15000円の赤字です。この結果を見て、私は思いました、確かにアプリ作成は楽しい、しかし、この作成時間、デバッグ時間、よくわからないObjective-Cの長い呪文、どうすればダウンロード数が伸びるか、結果を見て一喜一憂、次のアプリは何にしようか、今のアプリをどうアップグレードしようか、アルゴリズムは、、、などなど時間を消費?浪費?する項目がてんこ盛りです。これに対して、15000円の赤字、、、正直なところそもそも絶対値が絶対値なので、過剰反応かもしれませんが、これはひどいと言わざるを得ないです。おそらく時給換算したら数円でしょう。果たして、これになんの意味があるのか、私はないと思います。何か意味があるとしたら、アプリの売り上げサマリを見れたことでしょう、国別ダウンロード数、実行回数でしょうか。国別ダウンロード数はGDPに比例しているように見えました、また、実行回数は地域差があり、流行ってるところがあるんだなーとわかったり。本当にそれくらいです。とまぁ愚痴っぽくなってきたのでここで終えます。

ということで、未来の自分に向けて過去の過ちを繰り返さないようにここに記しておきます。
もしiPhoneアプリ開発をするならば、以下の点に気をつけること。

デベロッパー登録の魔力に気をつけろ

とにかく考える時間(ある種の妄想(億万長者〜とか)を含む)を短くしろ!時給を高くしろ!

デベロッパー登録料金(1万円/1年)をペイできなくても愚痴を漏らさないでください

無料広告アプリをやめろ、完成度の高いアプリをリリースしろ

最後の「無料広告アプリをやめろ」ですが、これは無料だと手を抜きやすくなってしまうからです。
質より量を増やせばいいだろう的な思考におちいりがちになってしまいます(なった)。
最初から有料アプリで売るつもりで、アプリの完成度を限界まで上げてリリースするのが最善かと思います。

以上、参考になることがあれば幸いです。

二値画像にk-meansを適用し、細線化?してみる

前回の続きです。今度は二値画像にk-meansを適用し、細線化?してみます。
二値画像においてk-meansが細線化や情報削減に利用できるのではないかと思えるような結果になりました。今回は、scipyのkmeans2を使用し、代表点の初期配置を領域内に収めることで、細線化?を実現します。

ソース:
(関係のないモジュールをimportしまくってますが無視してください。)

# -*- coding: utf-8 -*-
from itertools import combinations
from itertools import product
import random
import re
import numpy as np
from numpy import arange
import matplotlib.pyplot as plt
from scipy.ndimage import zoom
from scipy.fftpack import fft, ifft
from scipy.signal import resample
from scipy.spatial import Delaunay
import matplotlib.tri as tri
from scipy.cluster.vq import kmeans,vq
from scipy.cluster.vq import kmeans2,vq

def rawObjectToMatrix(ro):
    ret = []
    lines = ro.splitlines()
    for line in lines:
        if line.strip()=="":
            continue
        ret.append(map(lambda x: 0 if x == " " else 1, line))
    whiteRow = [[0 for _ in xrange(len(ret[0]))]]
    return whiteRow + ret + whiteRow

def pb(lst2d):
    ret = ""
    for lst in lst2d:
        lst = map(abs, lst)
        ret += "".join(map(str, lst)) + "\n"
    print ""
    print ret

def readMyData():
    with open("a.txt", 'r') as fp:
        text = fp.read()
    objectRawDataList = re.split(r"\n\n", text)
    objectRawDataList = filter(lambda x: x != "", objectRawDataList)
    return map(lambda ro: rawObjectToMatrix(ro), objectRawDataList)

lst = readMyData()

sampleMatrix = zoom(np.array(lst[5]), 1.5)
pb(sampleMatrix)

height = sampleMatrix.shape[0]
width = sampleMatrix.shape[1]

mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[rn, cn] == 1 and mat[rn + 1, cn] == 1:
            mat[rn, cn] = 0

out = mat
mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[(height - 1) - rn, cn] == 1 and mat[(height - 1) - rn - 1, cn] == 1:
            mat[(height - 1) - rn, cn] = 0

out |= mat
mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[rn, cn] == 1 and mat[rn, cn + 1] == 1:
            mat[rn, cn] = 0

out |= mat
mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[rn, (width - 1) - cn] == 1 and mat[rn, (width - 1) - cn - 1] == 1:
            mat[rn, (width - 1) - cn] = 0

out |= mat  

firstPosFlat = out.flatten().argmax()
pos = firstPosFlat / width, firstPosFlat % width
startPos = pos
code = []
while True:
    if   out[pos[0] - 1, pos[1]    ] == 1:
        out[pos[0] - 1, pos[1]    ] = 2
        pos = pos[0] - 1, pos[1]
        code.append((-1, 0))
    elif out[pos[0] - 1, pos[1] + 1] == 1:
        out[pos[0] - 1, pos[1] + 1] = 2
        pos = pos[0] - 1, pos[1] + 1
        code.append((-1, 1))
    elif out[pos[0]    , pos[1] + 1] == 1:
        out[pos[0]    , pos[1] + 1] = 2
        pos = pos[0]    , pos[1] + 1
        code.append((0, 1))
    elif out[pos[0] + 1, pos[1] + 1] == 1:
        out[pos[0] + 1, pos[1] + 1] = 2
        pos = pos[0] + 1, pos[1] + 1
        code.append((1, 1))
    elif out[pos[0] + 1, pos[1]    ] == 1:
        out[pos[0] + 1, pos[1]    ] = 2
        pos = pos[0] + 1, pos[1]    
        code.append((1, 0))
    elif out[pos[0] + 1, pos[1] - 1] == 1:
        out[pos[0] + 1, pos[1] - 1] = 2
        pos = pos[0] + 1, pos[1] - 1
        code.append((1, -1))
    elif out[pos[0]    , pos[1] - 1] == 1:
        out[pos[0]    , pos[1] - 1] = 2
        pos = pos[0]    , pos[1] - 1
        code.append((0, -1))
    elif out[pos[0] - 1, pos[1] - 1] == 1:
        out[pos[0] - 1, pos[1] - 1] = 2
        pos = pos[0] - 1, pos[1] - 1
        code.append((-1, -1))
    if pos == startPos:
        break

pr = startPos[0]
pc = startPos[1]
prlst = []
pclst = []
p = []
for n, c in enumerate(code):
    dr, dc = c
    pr += dr
    pc += dc
    prlst.append(pr)
    pclst.append(pc)
    p.append((pr, pc))

prlst = np.array(prlst)
pclst = np.array(pclst)

fig, ax = plt.subplots(1)
ax.plot(pclst, prlst)

numOfCentroids = 10
k = np.array(random.sample(zip(*np.where(sampleMatrix == 1)), numOfCentroids), dtype=np.float)
observation = np.array(zip(*np.where(sampleMatrix==1)), dtype=np.float)

# computing K-Means with K = 2 (2 clusters)
centroids,_ = kmeans2(observation, k, minit="point")

# assign each sample to a cluster
idx,_ = vq(observation,centroids)

centroidsRow, centroidsCol = centroids.T
centroidsRow = map(lambda x: int(round(x)), centroidsRow)
centroidsCol = map(lambda x: int(round(x)), centroidsCol)

sampleMatrixDummy = sampleMatrix.copy()
sampleMatrixDummy[centroidsRow, centroidsCol] = 5
pb(sampleMatrixDummy)

ax.plot(centroids[:,1], centroids[:,0], "sm")
fig.savefig("/Users/kei/Desktop/saisenka.png")

出力結果:

f:id:keimina:20160609223935p:plain

赤い点が周辺領域の代表点になります。形状の情報をよく表しているのではないかと思います。k-meansは形状の情報削減、圧縮、細線化などに使えそうなことがわかると思います。

抽出した輪郭を間引いてみる

昨日はオブジェクトから輪郭を抽出する処理を書きました。今日は、
輪郭を等間隔に間引いたものの形状がどうなるか見てみます。前処理としてオリジナルデータのオブジェクト領域が小さかったのでscipyのzoom関数で2倍に拡大してから処理に入っています。あと、符号化もしてます。等間隔に間引くだけなら符号化する必要はないかもしれませんが、あとで何かに使えるかもしれないので、符号化してみました。

# -*- coding: utf-8 -*-
import random
import re
import numpy as np
from numpy import arange
import matplotlib.pyplot as plt
from scipy.ndimage import zoom

def rawObjectToMatrix(ro):
    ret = []
    lines = ro.splitlines()
    for line in lines:
        if line.strip()=="":
            continue
        ret.append(map(lambda x: 0 if x == " " else 1, line))
    whiteRow = [[0 for _ in xrange(len(ret[0]))]]
    return whiteRow + ret + whiteRow

def pb(lst2d):
    ret = ""
    for lst in lst2d:
        lst = map(abs, lst)
        ret += "".join(map(str, lst)) + "\n"
    print ""
    print ret

def readMyData():
    with open("a.txt", 'r') as fp:
        text = fp.read()
    objectRawDataList = re.split(r"\n\n", text)
    objectRawDataList = filter(lambda x: x != "", objectRawDataList)
    return map(lambda ro: rawObjectToMatrix(ro), objectRawDataList)

lst = readMyData()

sampleMatrix = zoom(np.array(lst[5]), 1.5)
pb(sampleMatrix)

height = sampleMatrix.shape[0]
width = sampleMatrix.shape[1]

mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[rn, cn] == 1 and mat[rn + 1, cn] == 1:
            mat[rn, cn] = 0

out = mat
mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[(height - 1) - rn, cn] == 1 and mat[(height - 1) - rn - 1, cn] == 1:
            mat[(height - 1) - rn, cn] = 0

out |= mat
mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[rn, cn] == 1 and mat[rn, cn + 1] == 1:
            mat[rn, cn] = 0

out |= mat
mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[rn, (width - 1) - cn] == 1 and mat[rn, (width - 1) - cn - 1] == 1:
            mat[rn, (width - 1) - cn] = 0

out |= mat  
pb(out)

firstPosFlat = out.flatten().argmax()
pos = firstPosFlat / width, firstPosFlat % width
startPos = pos
code = []
while True:
    if   out[pos[0] - 1, pos[1]    ] == 1:
        out[pos[0] - 1, pos[1]    ] = 2
        pos = pos[0] - 1, pos[1]
        code.append((-1, 0))
    elif out[pos[0] - 1, pos[1] + 1] == 1:
        out[pos[0] - 1, pos[1] + 1] = 2
        pos = pos[0] - 1, pos[1] + 1
        code.append((-1, 1))
    elif out[pos[0]    , pos[1] + 1] == 1:
        out[pos[0]    , pos[1] + 1] = 2
        pos = pos[0]    , pos[1] + 1
        code.append((0, 1))
    elif out[pos[0] + 1, pos[1] + 1] == 1:
        out[pos[0] + 1, pos[1] + 1] = 2
        pos = pos[0] + 1, pos[1] + 1
        code.append((1, 1))
    elif out[pos[0] + 1, pos[1]    ] == 1:
        out[pos[0] + 1, pos[1]    ] = 2
        pos = pos[0] + 1, pos[1]    
        code.append((1, 0))
    elif out[pos[0] + 1, pos[1] - 1] == 1:
        out[pos[0] + 1, pos[1] - 1] = 2
        pos = pos[0] + 1, pos[1] - 1
        code.append((1, -1))
    elif out[pos[0]    , pos[1] - 1] == 1:
        out[pos[0]    , pos[1] - 1] = 2
        pos = pos[0]    , pos[1] - 1
        code.append((0, -1))
    elif out[pos[0] - 1, pos[1] - 1] == 1:
        out[pos[0] - 1, pos[1] - 1] = 2
        pos = pos[0] - 1, pos[1] - 1
        code.append((-1, -1))
    if pos == startPos:
        break

pb(out)


mabiki = [1, 2, 4, 8, 16, 32]
for m in mabiki:
    pr = 0
    pc = 0
    p = []
    for n, c in enumerate(code):
        dr, dc = c
        pr += dr
        pc += dc
        if n % m == 0:
            p.append((pr, pc))

    x = map(lambda x: x[1], p)
    y = map(lambda x: x[0], p)
    x += [0]
    y += [0]
    fig, ax = plt.subplots(1)
    ax.plot(x, y)
    fig.savefig("/Users/kei/Desktop/mabiki%d.png"%m)

出力(上から順に、オリジナル, 2, 4, 8, 16, 32ステップごとにサンプルをとった場合の集合):
f:id:keimina:20160529120729p:plain
f:id:keimina:20160529120727p:plain
f:id:keimina:20160529120724p:plain
f:id:keimina:20160529120721p:plain
f:id:keimina:20160529120718p:plain
f:id:keimina:20160529120715p:plain

輪郭抽出

いきなりですが、輪郭抽出をPythonで実装しました。
ここでいう輪郭抽出とは画像にフィルタを適用する話ではありません。二値画像のオブジェクトの輪郭を綺麗に抽出したいのです。

すでに、このアルゴリズムがあるかは知りませんが、アルゴリズムのイメージだけ説明すると、上下左右の4方向から光をてらして光が当たる部分だけ取り出すという感じです。実際にはひたすら「連続する(1,1)を消していく」を4方向分行うだけです。

境界値処理は行っていません。以下のように入力データを加工したので、境界値の問題は発生しませんでした。

00000 < はじめと終わりの行データが非オブジェクト(0)である
00100 < 左端と右端の列データが非オブジェクト(0)である
01110
00100
00000

以下に、冗長だがよみやすいソースコードを記載していることを望みます。

# -*- coding: utf-8 -*-
import random
import re
import numpy as np
from numpy import arange

def rawObjectToMatrix(ro):
    ret = []
    lines = ro.splitlines()
    for line in lines:
        if line.strip()=="":
            continue
        ret.append(map(lambda x: 0 if x == " " else 1, line))
    whiteRow = [[0 for _ in xrange(len(ret[0]))]]
    return whiteRow + ret + whiteRow

def pb(lst2d):
    ret = ""
    for lst in lst2d:
        lst = map(abs, lst)
        ret += "".join(map(str, lst)) + "\n"
    print ""
    print ret

def readMyData():
    with open("a.txt", 'r') as fp:
        text = fp.read()
    objectRawDataList = re.split(r"\n\n", text)
    objectRawDataList = filter(lambda x: x != "", objectRawDataList)
    return map(lambda ro: rawObjectToMatrix(ro), objectRawDataList)

lst = readMyData()

sampleMatrix = np.array(lst[5])
pb(sampleMatrix)

height = sampleMatrix.shape[0]
width = sampleMatrix.shape[1]

mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[rn, cn] == 1 and mat[rn + 1, cn] == 1:
            mat[rn, cn] = 0

out = mat
mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[(height - 1) - rn, cn] == 1 and mat[(height - 1) - rn - 1, cn] == 1:
            mat[(height - 1) - rn, cn] = 0

out |= mat
mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[rn, cn] == 1 and mat[rn, cn + 1] == 1:
            mat[rn, cn] = 0

out |= mat
mat = sampleMatrix.copy()
for rn, _ in enumerate(mat):
    for cn, __ in enumerate(_):
        if mat[rn, (width - 1) - cn] == 1 and mat[rn, (width - 1) - cn - 1] == 1:
            mat[rn, (width - 1) - cn] = 0

out |= mat  
pb(out)

a.txtのデータはこちらになります。

   @@            
   @@@@          
   @@@@@@        
   @@@@@@@       
     @@@@@@      
       @@@@@@    
         @@@@    



            @@@@@@@ 
      @@@@@@@@@@@@  
   @@@@@@@@@@@@     
  @@@@@@@@@@@@      
  @@@@@@@           
  @@@@@             
  @@@               



                              
                    @@@@@@@@  
               @@@@@@@@@@@@@  
             @@@@@@@@@@@@@@@  
          @@@@@@@@@@@@@@@     
        @@@@@@@@@@@@@@@@      
      @@@@@@@@@@@@@@@         
    @@@@@@@@@@@@@@            
    @@@@@@@@@@@               
     @@@@@                    



                           @@@@       
                           @@@@@@@    
                            @@@@@@@   
                            @@@@@@@@  
                            @@@@@@@@  
                           @@@@@@@@@  
                           @@@@@@@@@  
  @@@@@                    @@@@@@@@@  
 @@@@@@@@                 @@@@@@@@@@  
 @@@@@@@@               @@@@@@@@@@@@  
 @@@@@@@@             @@@@@@@@@@@@@@  
 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@    
 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@     
  @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@      
   @@@@@@@@@@@@@@@@@@@@@@@@@@@@       
      @@@@@@@@@@@@@@@@@@@@@@@         
            @@@@@@@@@@@@@@@@          



                                      @@@@@@@@@    
                                  @@@@@@@@@@@@@@@  
                              @@@@@@@@@@@@@@@@@@@  
                           @@@@@@@@@@@@@@@@@@@@@@  
                        @@@@@@@@@@@@@@@@@@@@@@@@@  
                      @@@@@@@@@@@@@@@@@@@@@@@@@@   
                    @@@@@@@@@@@@@@@@@@@@@@@@@@     
                  @@@@@@@@@@@@@@@@@@@@@@@@@@@      
               @@@@@@@@@@@@@@@@@@@@@@@@@@@@        
             @@@@@@@@@@@@@@@@@@@@@@@@@@@@          
           @@@@@@@@@@@@@@@@@@@@@@@@@@@             
          @@@@@@@@@@@@@@@@@@@@@@@@@                
         @@@@@@@@@@@@@@@@@@@@@@@                   
         @@@@@@@@@@@@@@@@@@@@@                     
          @@@@@@@@@@@@@@@@                         
           @@@@@@@@@@@                             




                                @@@@@@@@@              
                            @@@@@@@@@@@@@@@@           
                         @@@@@@@@@@@@@@@@@@@@@@        
                       @@@@@@@@@@@      @@@@@@@@@      
                     @@@@@@@@@            @@@@@@@@     
                     @@@@                    @@@@@     
                                             @@@@@@    
                                             @@@@@@    
                                             @@@@@@    
                   @@                       @@@@@@@    
                  @@@@                     @@@@@@@     
                  @@@@@@                  @@@@@@@@     
                   @@@@@@@@          @@@@@@@@@@@@      
                     @@@@@@@@@@@@@@@@@@@@@@@@@@@       
                        @@@@@@@@@@@@@@@@@@@@@@         
                             @@@@@@ @@@@@@@            

実行結果

0000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000011111111100000000000000
0000000000000000000000000000111111111111111100000000000
0000000000000000000000000111111111111111111111100000000
0000000000000000000000011111111111000000111111111000000
0000000000000000000001111111110000000000001111111100000
0000000000000000000001111000000000000000000001111100000
0000000000000000000000000000000000000000000001111110000
0000000000000000000000000000000000000000000001111110000
0000000000000000000000000000000000000000000001111110000
0000000000000000000110000000000000000000000011111110000
0000000000000000001111000000000000000000000111111100000
0000000000000000001111110000000000000000001111111100000
0000000000000000000111111110000000000111111111111000000
0000000000000000000001111111111111111111111111110000000
0000000000000000000000001111111111111111111111000000000
0000000000000000000000000000011111101111111000000000000
0000000000000000000000000000000000000000000000000000000


0000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000011111111100000000000000
0000000000000000000000000000111100000000011100000000000
0000000000000000000000000111000000111111000011100000000
0000000000000000000000011000001111000000110000011000000
0000000000000000000001100111110000000000001110000100000
0000000000000000000001111000000000000000000001000100000
0000000000000000000000000000000000000000000001000010000
0000000000000000000000000000000000000000000001000010000
0000000000000000000000000000000000000000000001000010000
0000000000000000000110000000000000000000000010000010000
0000000000000000001001000000000000000000000100000100000
0000000000000000001000110000000000000000001000000100000
0000000000000000000110001110000000000111110000001000000
0000000000000000000001110001111111111000000000110000000
0000000000000000000000001111100000010000000111000000000
0000000000000000000000000000011111101111111000000000000
0000000000000000000000000000000000000000000000000000000

これを見ると、ガタガタじゃないかと思われるが、人間の目には"1"の領域の輪郭がしっかり把握できるのは、"1"という文字を符号としてみているのではなく、画像としてみているー数百ドットではなく数万ドットやそれ以上として認識されているーからだと思います。

備忘録、Raspberry Piにシリアル接続する方法

1年くらいに購入したラズベリーパイMacでシリアル接続してみた。
結果、Arduino書き込みのために購入した、USB-シリアル変換ケーブルでシリアル接続できた。
配線は以下のとおり。

f:id:keimina:20160514174754j:plain
※ラズパイが3.3VなのでUSB-シリアル変換ケーブルも3.3Vに合わせる。

この状態で以下のコマンドを実行。
f:id:keimina:20160514184643p:plain

idとパスワードを入力
f:id:keimina:20160514184640p:plain

以上。